Nif1, a novel mitotic inhibitor in Schizosaccharomyces pombe.

نویسندگان

  • L Wu
  • P Russell
چکیده

In Schizosaccharomyces pombe, the activity of the M-phase-inducing Cdc2/Cdc13 cyclin-dependent kinase is inhibited by Wee1 and Mik1 tyrosine kinases, and activated by Cdc25 and Pyp3 tyrosine phosphatases. Cdc2/Cdc13 activity is also indirectly regulated by the approximately 70 kDa Nim1 (Cdrl) serine/threonine kinase, which promotes mitosis by inhibiting Wee1 via direct phosphorylation. To understand better the function and regulation of Nim1, the yeast two-hybrid system was used to isolate S.pombe cDNA clones encoding proteins that interact with Nim1. Sixteen of the 17 cDNA clones were derived from the same gene, named nif1 + (nim1 interacting factor-1). Nif1 is a novel approximately 75 kDa protein containing a leucine zipper motif. The Nif1-Nim1 interaction requires a small region of Nim1 that immediately follows the N-terminal catalytic domain. This region is required for Nim1 activity both in vivo and in vitro. delta nif1 mutants are approximately 10% smaller than wild type, indicating that Nif1 is involved in inhibiting the onset of mitosis. Consistent with this proposal, overproduction of Nif1 was found to cause a cell elongation phenotype that is very similar to delta nim1 mutants. Nif1 overproduction causes cell cycle arrest in cells that are partly defective for Cdc25 activity, but has no effect in delta nim1 or delta wee1 mutants. Nif1 also inhibits Nim1-mediated phosphorylation of Wee1 in an insect cell expression system. These observations strongly suggest that Nif1 negatively regulates the onset of mitosis by a novel mechanism, namely inhibiting Nim1 kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A screen for genes involved in the anaphase proteolytic pathway identifies tsm1(+), a novel Schizosaccharomyces pombe gene important for microtubule integrity.

The growth of several mitotic mutants of Schizosaccharomyces pombe, including nuc2-663, is inhibited by the protease inhibitor N-Tosyl-L-Phenylalanine Chloromethyl Ketone (TPCK). Because nuc2(+) encodes a presumptive component of the Anaphase Promoting Complex, which is required for the ubiquitin-dependent proteolysis of certain proteins during exit from mitosis, we have used sensitivity to TPC...

متن کامل

Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression on basic cellular function of fission yeast Schizosaccharomyces pombe.

The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and...

متن کامل

The nucleolar Net1/Cfi1-related protein Dnt1 antagonizes the septation initiation network in fission yeast.

The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe, and Saccharomyces cerevisiae, respectively. One function of these pathways is to keep the Cdc14-family phosphatase, called Clp1 in S. pombe, from being sequestered and inhibited in the nucleolus. In S. pombe, the SIN and Clp1 act...

متن کامل

Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells

The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lie...

متن کامل

A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression

Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 1997